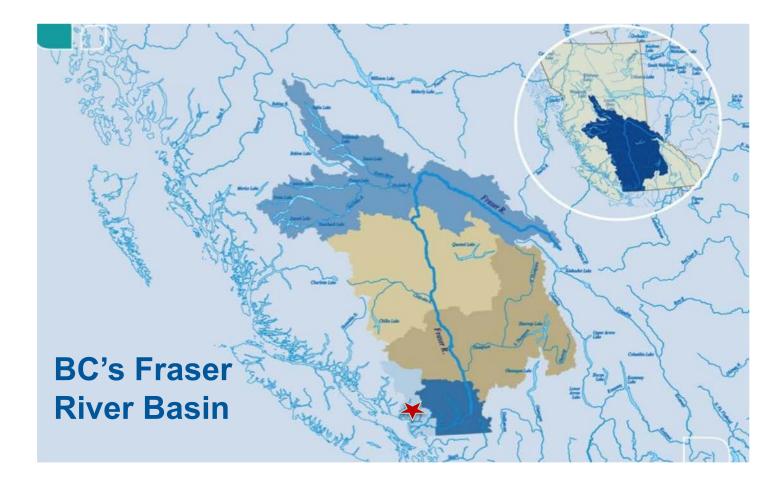
Lower Mainland Flood Management Strategy


INTEGRATING CLIMATE CHANGE IN FLOOD PLANNING AND DECISION MAKING

ADAPTATION CANADA 2020 CONFERENCE February 19, 2020 – Fraser Basin Council

Lower Mainland Flood Management Strategy

Aims to reduce flood risk and increase resilience for communities along the Lower Fraser River and South Coast



Floods of Recent Record

		Annual Exceedance Probability (AEP)	Estimated Return Period (yrs)	Peak Discharge at Hope (m³/s)	Duration of peak (weeks)	
18	394	<0.2%	>500	17,000	- Desig	n flood
19	948	0.5%	200	15,200	4	

1894 Fraser River Flood – Chilliwack

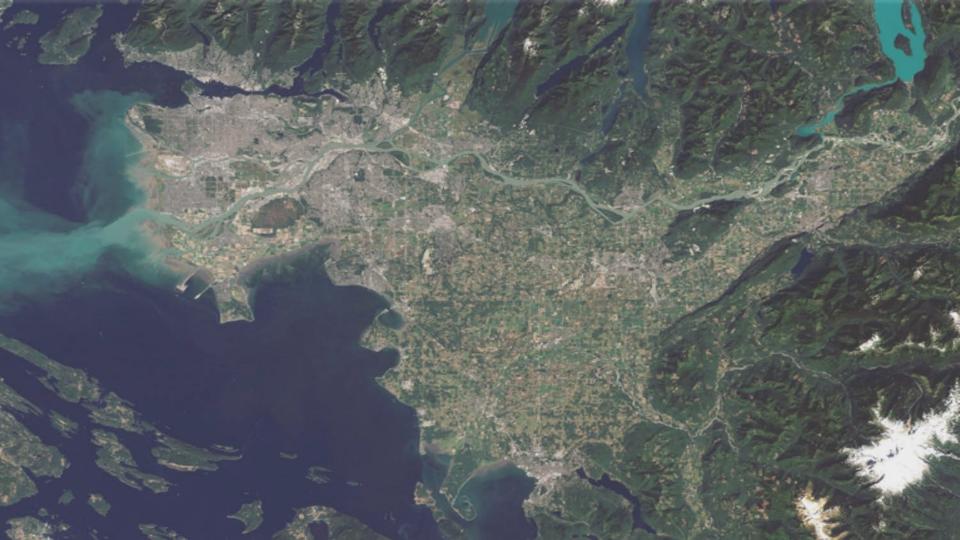
1948 Fraser River Flood

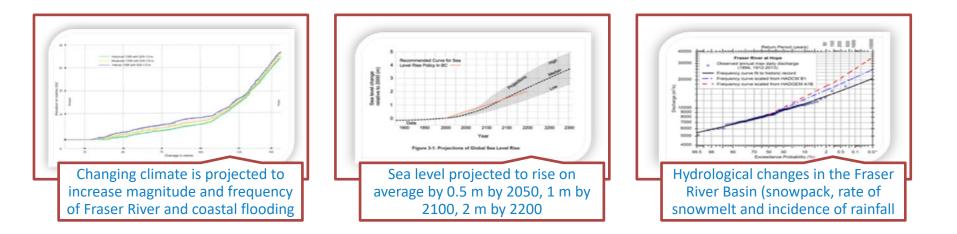
CGEN Archive

Vancouver Archives

1948 Fraser River Flood (estimated impacts)

16,000 people evacuated


22,000 hectares of farmland disappeared

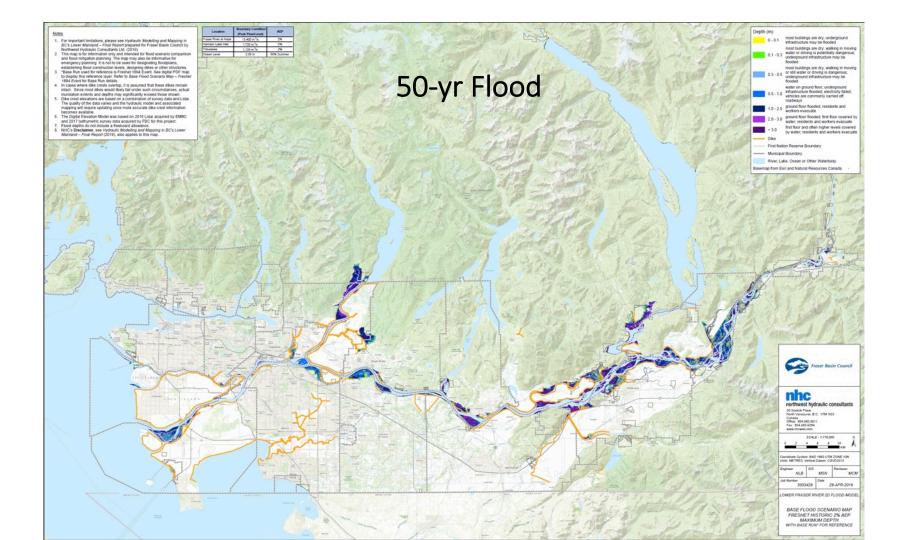

2,000 homes damaged or completely destroyed

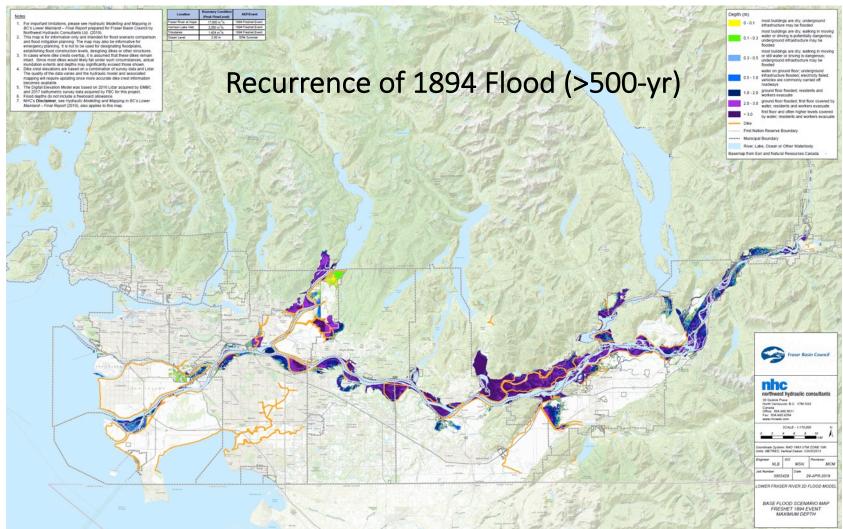
\$210 million in total damages

What about Climate Change?

Regional Assessment of Flood Vulnerabilities

Estimated People Impacted


Flood Scenario	Total population seeking shelter	Number of Municipalities	Number of First Nations	Number of Reserve / Treaty lands
A. Coastal Present Day	238,000	15	4	7
B. Coastal Year 2100	261,000	15	5	9
C. River Present Day	266,000	17	22	43
D. River Year 2100	311,000	17	23	47


Regional Assessment of Flood Vulnerabilities

Total Economic Loss Projections

Flood Scenario	Residential	Commercial	Industrial	Public/ Institutional Buildings	Interrupted Cargo Shipments	Infra- structure	Agriculture	Total
A. Coastal Present Day	\$5.6 B	\$6.3 B	\$1.6 B	\$720 M	\$3.6 B	\$1.4 B	\$100 M	\$19.3 B
B. Coastal Year 2100	\$7.1 B	\$8.6 B	\$2.6 B	\$910 M	\$3.6 B	\$1.8 B	\$200 M	\$24.7 B
C. River Present Day	\$2.6 B	\$3.8 B	\$1.6 B	\$880 M	\$7.7 B	\$4.6 B	\$1.6 B	\$22.9 B
D. River Year 2100	\$6.6 B	\$7.6 B	\$2.9 B	\$1.2 B	\$7.7 B	\$5.0 B	\$1.6 B	\$32.7 B

- For important limitations, please see Hydrautic Modeling and Mapping in BC's Lower Mainland – Final Report prepared for Fraser Basin Council by Northwest Hydrautic Consultant Ltd. (2014).
- This map is for information only and intended for food scenario comparison and food mitigation planning. The map may also be informative for emergency planning. It is not to be used for designating foodplane.

Locator

- establishing flood construction levels, designing dikes or other structures.
 Tbase Run used for reference in Frenheit 1694 Event. See digtal PDF map to display this reference layer. Refer to ilase Flood Scienario Map – Fresheit 1694 Event for Ilase Run details.
- In cases where dise creds overlop, it is assumed that these dises remain intact. Since most dises would likely fail under such circumstances, actual
- inundation entents and depths may significantly exceed those shoen. 5. Diffe creat elevations are based on a combination of survey data and Lidar. The quality of the data varies and the hydraulic model and associated.
- mapping will require updating once more accurate dike creat information becomes available. 6. Climate change projections of over flows and sea level rise include a high
- degree of uncertainty. 7. The Digital Elevation Model was based on 2016 Lidar acquired by EMBC
- and 2017 bathymetric survey data acquired by FBC for this project. 8. Flood depths do not include a freebuard allowance.
- NHC's Disclaimer, see Hydraulic Modeling and Mapping in BC's Lower Mainland – Finar Report (2019), also applies to this map.

500-vr Flood CC pro

500-yr Flood, CC projection to year 2100 (1 m SLR and higher Fraser peak flow)

MAXIMUM DEPTH HITH BASE RUN FOR REFERENCE

On the ground visualization: Church of the Holy Redeemer

Church of the Holy Redeemer NO FLOOD SCENARIO FLOOD DEPTH 0.0 m

Church of the Holy Redeemer RECURRENCE OF 1894 FLOOD FLOOD DEPTH ~1.3 m

Church of the Holy Redeemer 500-YR FLOOD, YEAR 2100, 1M SLR FLOOD DEPTH ~2.84 m

On the ground visualization: Matsqui Trail

Matsqui Trail scenario: recurrence of 1894 freshet flood flood depth: ~2.93M

Matsqui Trail scenario: 500-year freshet flood in 2100 FLOOD DEPTH: ~4.75M

Flood Hazard Modelling and Mapping – Key Findings

Dike raising (to Provincial std) - Flooded area reduced by 37%, flood levels inchannel increased by 30 cm in and around Mission (1894 flood) **Dike setbacks** (400m setback for 12km length) - Flood levels in-channel dropped around 15 cm in vicinity of the setback (1894 flood)

Upstream storage (Nechako and Bridge River reservoirs) - Estimated to reduce water levels by 30-40 cm between Hope and Mission (0.5% AEP **(200-yr) flood**) **Gravel removal** (2M m3 removed, lowering gravel bars by 2m from Agassiz bridge to Harrison River) - Flood levels in-channel dropped by about 12 cm in the vicinity (1894 flood)

Risk Reduction Options to Consider

- Land use planning and floodplain regulation
- Floodproofing (flood construction levels)
- Dikes, floodwalls and related infrastructure (shoreline dikes, setback dikes, super dikes, pumps, floodgates, etc.)
- Water diversion and upstream storage
- Sediment removal
- Sea barriers (for storm surges)
- Nature-based solutions (living dikes, beach nourishment)
- Other (e.g. emergency response and recovery, insurance, disaster assistance, and more)

Proposed Criteria to Evaluate Options

- Effectiveness at reducing flood risk
- Feasibility (technical and regulatory feasibility)
- Cost relative to benefit (capital, operations and maintenance, life cycle costs)
- First Nations title, rights, interests and consent
- Sustainability benefits and adverse impacts (environmental, social, cultural and economic)
- Regional benefits and/or risk transfer
- Future flexibility / adaptability

Thank you. Questions and Comments?

Fraser Basin Council

Steve Litke, Sr. Program Manager <u>slitke@fraserbasin.bc.ca</u>

Frances Woo, Program Manager <u>fwoo@fraserbasin.bc.ca</u>

Havan Surat, Program Manager hsurat@fraserbasin.bc.ca Natalie Elster, Asst. Program Manager nelster@fraserbasin.bc.ca

www.floodstrategy.ca

